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Abstract We calculate zeta and normal zeta functions of space groups with the point
group isomorphic to the cyclic group of order 2. The obtained results are applied to
determine the number of subgroups, resp. normal subgroups, of a given index for each
of these groups.
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1 Introduction

The concepts of the zeta and normal zeta function of a group were introduced by
Grunewald et al. [4] and Smith [7]. The zeta function of a group G is defined as
ζG(s) = ∑

n∈N an(G)n−s , where an(G) denotes the number of subgroups of index n
in G. The normal zeta function of a group G is given by ζ �

G(s) = ∑
n∈N cn(G)n−s ,

where cn(G) is the number of normal subgroups of index n in G. These functions
provide a useful tool for studying the relationship between the asymptotic behavior of
the sequences an(G), resp. cn(G), and the structure of G.

If a group G has a polynomial subgroup growth, i.e. if an(G) ≤ nk for some k and
for all n ∈ N , then ζG(s) has a non-trivial domain of convergence. In particular, if
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hermina@mf.unze.ba

Muharem Avdispahić
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G is residually finite nilpotent group then an(G) grows polynomially and ζG(s) =∑
n∈N an(G)n−s satisfies an Euler product formula ζG(s) = ∏

p∈P ζG,p(s), where
ζG,p(s) counts only subgroups of p-power index and P denotes the set of all primes.

du Sautoy et al. [2] proved the following theorem.

Theorem 1.1 Let G be a finite extension of a free abelian group of finite rank. Then
ζG(s) and ζ �

G(s) can be extended to meromorphic functions on the whole complex
plane.

Lubotzky and du Sautoy [1] established a functional equation ζG,p(s)
∣
∣
p→p−1 =

(−1)n pas+bζG,p(s) satisfied by the local factors of the zeta function of a group for
some torsion-free nilpotent groups and appropriate a, b, n ∈ N. Here p → p−1

denotes a formal inversion of the local parameter p. In this regard, see also [8,9].
There are relatively few explicit expressions known for zeta functions of groups.

McDermott [6] calculated the zeta functions of the seventeen plane crystallographic
groups.

A space group represents a description of the symmetry of a crystal. A crystallo-
graphic group G contains a translation subgroup T which consists of all elements of
the group corresponding to translations of the pattern involved. The factor groupG

/
T

is known as the point group of G and is denoted by P . Group G is a finite extension
of T by P , since P is finite.

In this paper, we calculate zeta and normal zeta functions of space groups with the
point group isomorphic to the cyclic group of order 2. There are eight such groups: P 1̄,
P2, P21, C2, Pm, Pc, Cm and Cc [5]. After stating results in Sect. 2, we provide the
application of these results to compute the number of subgroups of a given index for
each group in Sects. 3 and 4. We describe the method of proof in Sect. 5 and provide
full details in case of the group C2, as a sample.

2 Results

For a sake of brevity, the following notation for translates of the Riemann zeta function
is used in the sequel:

ζk(s) = ζ(s − k), i.e., ζ2(s) = ζ(s − 2).

Theorem 2.1 Zeta functions of space groups with the point group isomorphic to the
cyclic group of order 2 read as follows

ζP 1̄(s) = ζ1(s)ζ2(s)ζ3(s) + 2−sζ(s)ζ1(s)ζ2(s)

ζP2(s) = (1 + 2−s+3)ζ(s)ζ1(s)ζ2(s)

ζP21(s) = ζ(s)ζ1(s)ζ2(s)

ζC2(s) = (1 + 2−2s+3)ζ(s)ζ1(s)ζ2(s)

ζPm(s) = (1 + 9 · 2−s + 6 · 2−2s)ζ(s)ζ1(s)ζ1(s) + 2−sζ(s)ζ1(s)ζ2(s)

ζPc(s) = (1 + 2−s − 2 · 2−2s)ζ(s)ζ1(s)ζ1(s) + 2−sζ(s)ζ1(s)ζ2(s)
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ζCm = (1 + 2−s + 6 · 2−2s + 8 · 2−3s)ζ(s)ζ1(s)ζ1(s) + 2−sζ(s)ζ1(s)ζ2(s)

ζCc(s) = (1 − 3 · 2−s + 10 · 2−2s − 8 · 2−3s)ζ(s)ζ1(s)ζ1(s) + 2−sζ(s)ζ1(s)ζ2(s)

Theorem 2.2 Normal zeta functions of space groups with the point group isomorphic
to the cyclic group of order 2 are given by

ζ �
P 1̄

(s) = 1 + 14 · 2−s + 28 · 2−2s + 8 · 2−3s + 2−sζ(s)ζ1(s)ζ2(s)

ζ �
P2(s) = (1 + 13 · 2−s + 22 · 2−2s + 4 · 2−3s)ζ(s) + (3 · 2−2s + 2−s)ζ(s)ζ(s)ζ1(s)

ζ �
P21(s) = (1 + 5 · 2−s − 2 · 2−2s − 4 · 2−3s)ζ(s) + (2−s + 3 · 2−2s)ζ(s)ζ(s)ζ1(s)

ζ �
C2(s) = (2 · 2−2s + 5 · 2−s + 1)ζ(s) + 2−s · (1 − 2−s + 4 · 2−2s)ζ(s)ζ(s)ζ1(s)

ζ �
Pm(s) = (1 + 11 · 2−s + 12 · 2−2s)ζ(s)ζ1(s) + 2−s(1 + 3 · 2−s)ζ(s)ζ(s)ζ1(s)

ζ �
Pc(s) = (1 + 3 · 2−s − 4 · 2−2s)ζ(s)ζ1(s) + (3 · 2−2s + 2−s)ζ(s)ζ(s)ζ1(s)

ζ �
Cm(s) = (3 · 2−s + 1)ζ(s)ζ1(s) + 2−s · (1 − 2−s + 4 · 2−2s)ζ(s)ζ(s)ζ1(s)

ζ �
Cc(s) = (1 − 2−s)ζ(s)ζ1(s) + (4 · 2−3s − 2−2s + 2−s)ζ(s)ζ(s)ζ1(s)

3 Applications: subgroups of a given index

In this and the following section, d(n) denotes the number of all positive divisors of
a positive integer n and σ(n) denotes the sum of all positive divisors for a positive
integer n, i. e. σ(n) = ∑

l|n l.

Proposition 3.1 The number of all subgroups of index n in the group P 1̄ is given by
the following expressions

1. if n is even,

an = n
∑

l|n
l · σ(l)+

∑

l|( n
2 )

l · σ(l)

2. if n is odd, an = n
∑

l|n l · σ(l),

In particular, ap = p3 + p2 + p for every odd prime p.

Proposition 3.2 The number of all subgroups of index n in group P2 reads:

1. if n is even,

an =
∑

l|n
l · σ(l) + 8 ·

∑

l|( n
2 )

l · σ(l)

2. if n is odd, an = ∑
l|n l · σ(l),

In particular, if p is an odd prime, then ap = p2 + p + 1.
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Proposition 3.3 The number of all subgroups of index n in group P21 is an =∑
l|n l · σ(l). In particular, ap = p2 + p + 1 for every odd prime p.

Proposition 3.4 The number of all subgroups of index n in the group C2 is

an =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

l|n
l · σ(l), (n ≡ 1 ∨ n ≡ 2 ∨ n ≡ 3) (mod4)

∑

l|n
l · σ(l) + 8 ·

∑

l|( n
4 )

l · σ(l), n ≡ 0 (mod4)

In particular, if p is an odd prime, then ap = p2 + p + 1.

Proposition 3.5 The number of all subgroups of index n in the group Pm is as follows:

1. if n is even,

an =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

l|n
l · d(l) + 9 ·

∑

l|( n
2 )

l · d(l) +
∑

l|( n
2 )

l · σ(l), n ≡ 2 (mod4)

∑

l|n
l · d(l) + 9

∑

l|( n
2 )

l · d(l) + 6
∑

l|( n
4 )

l · d(l) +
∑

l|( n
2 )

l · σ(l), n ≡ 0 (mod4)

2. if n is odd, an = ∑
l|n l · d(l).

In particular, if p is an odd prime, then ap = 2p + 1.

Proposition 3.6 The number of all subgroups of index n in the group Pc is given by:

1. if n is even,

an =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∑

l|n
l · d(l) +

∑

l|( n
2 )

l · d(l) +
∑

l|( n
2 )

l · σ(l), n ≡ 2 (mod4)

∑

l|n
l · d(l) +

∑

l|( n
2 )

l · d(l) − 2 ·
∑

l|( n
4 )

l · d(l) +
∑

l|( n
2 )

l · σ(l), n ≡ 0 (mod4)

2. if n is odd, an = ∑
l|n l · d(l).

In particular, if p is an odd prime, then ap = 2p + 1.

Proposition 3.7 The number of all subgroups of index n in the group Cm is:

1. if n is even,

an =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

l|n
l · d(l) +

∑

l|( n
2 )

l · d(l) +
∑

l|( n
2 )

l · σ(l), (n ≡ 2 ∨ n ≡ 6 )(mod8)

∑

l|n
l · d(l) +

∑

l|( n
2 )

l · d(l) + 6 ·
∑

l|( n
4 )

l · d(l) +
∑

l|( n
2 )

l · σ(l), n ≡ 4 (mod8)

∑

l|n
ld(l) +

∑

l|( n
2 )

ld(l) + 6
∑

l|( n
4 )

ld(l) + 8
∑

l|( n
8 )

ld(l) +
∑

l|( n
2 )

lσ(l), n ≡ 0 (mod8)
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2. if n is odd, an = ∑
l|n l · d(l).

In particular, if p is an odd prime, then ap = 2p + 1.

Proposition 3.8 The number of all subgroups of index n in the group Cc is the fol-
lowing:

1. if n is even,

an =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑

l|n
l · d(l) − 3 ·

∑

l|( n2
)
l · d(l) +

∑

l|( n2
)
l · σ(l), (n ≡ 2 ∨ n ≡ 6) (mod8)

∑

l|n
l · d(l) − 3 ·

∑

l|( n2
)
l · d(l) + 10 ·

∑

l|( n4
)
l · d(l) +

∑

l|( n2
)
l · σ(l), n ≡ 4 (mod8)

∑

l|n
ld(l)−3

∑

l|( n2
)
ld(l)+10

∑

l|( n4
)
ld(l)−8

∑

l|( n8
)
ld(l)+

∑

l|( n2
)
lσ(l), n ≡ 0 (mod8)

2. if n is odd, an = ∑
l|n l · d(l).

In particular, if p is an odd prime, then ap = 2p + 1.

4 Applications: normal subgroups of a given index

Proposition 4.1 The number of all normal subgroups of index n in the group P 1̄
reads:

1. c1 = 1,
2. if n is odd and n �= 1, then cn = 0,

3. if n is even, cn =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

15, n = 2,
35, n = 4,
43, n = 8,∑

l|( n
2 )
l · σ(l), n ≡ 0(mod2) ∧ n �= 1, 2, 4, 8

Proposition 4.2 The number of all normal subgroups of index n in the group P2 is:

1. if n is even,

cn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

40 + 3 ·
∑

l|( n
4 )

σ (l) +
∑

l|( n
2 )

σ (l), n ≡ 0 (mod8),

14 +
∑

l|( n
2 )

σ (l), (n ≡ 2 ∨ n ≡ 6) (mod8)

36 + 3 ·
∑

l|( n
4 )

σ (l) +
∑

l|( n
2 )

σ (l), n ≡ 4 (mod8)

2. if n is odd, cn = 1.
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Proposition 4.3 The number of all normal subgroups of index n in the group P21 is
given by:

1. if n is even,

cn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3 ·
∑

l|( n
4 )

σ (l) +
∑

l|( n
2 )

σ (l), n ≡ 0 (mod8),

6 +
∑

l|( n
2 )

σ (l), (n ≡ 2 ∨ n ≡ 6) (mod8),

4 + 3 ·
∑

l|( n
4 )

σ (l) +
∑

l|( n
2 )

σ (l), n ≡ 4 (mod8)

2. if n is odd, cn = 1.

Proposition 4.4 The number of all normal subgroups of index n in the group C2 is:

1. if n is even,

cn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6 +
∑

l|( n
2 )

σ (l), (n ≡ 2 ∨ n ≡ 6 ) (mod8)

8 −
∑

l|( n
4 )

σ (l) +
∑

l|( n
2 )

σ (l), n ≡ 4 (mod8)

8 + 4 ·
∑

l|( n
8 )

σ (l) −
∑

l|( n
4 )

σ (l) +
∑

l|( n
2 )

σ (l), n ≡ 0 (mod8)

2. if n is odd, cn = 1.

Proposition 4.5 The number of all normal subgroups of index n in the group Pm is:

1. if n is even,

cn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ(n) + 11 · σ
(n

2

)
+

∑

l|( n
2 )

σ (l), n ≡ 2 (mod4)

σ (n) + 11 · σ
(n

2

)
+ 12 · σ

(n

4

)
+

∑

l|( n
2 )

σ (l) + 3 ·
∑

l|( n
4 )

σ (l), n ≡ 0 (mod4)

2. if n is odd, cn = σ(n).

In particular, if p is an odd prime, then cp = p + 1.

Proposition 4.6 The number of all normal subgroups of index n in the group Pc
reads:

123



J Math Chem (2015) 53:1537–1548 1543

1. if n is even,

cn =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ(n) + 3 · σ
(n

2

)
+

∑

l|( n
2 )

σ (l), n ≡ 2 (mod4)

σ (n) + 3 · σ
(n

2

)
− 4 · σ

(n

4

)
+

∑

l|( n
2 )

σ (l) + 3 ·
∑

l|( n
4 )

σ (l), n ≡ 0 (mod4)

2. if n is odd, cn = σ(n).

In particular, if p is an odd prime, then cp = p + 1.

Proposition 4.7 The number of all normal subgroups of index n in the group Cm is
given by:

1. if n is even,

cn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ(n) + 3 · σ
(n

2

)
+

∑

l|( n
2 )

σ (l), (n ≡ 2 ∨ n ≡ 6) (mod8)

σ (n) + 3 · σ
(n

2

)
+

∑

l|( n
2 )

σ (l) −
∑

l|( n
4 )

σ (l), n ≡ 4 (mod8)

σ (n) + 3 · σ
(n

2

)
+

∑

l|( n
2 )

σ (l) −
∑

l|( n
4 )

σ (l) + 4 ·
∑

l|( n
8 )

σ (l) , n ≡ 0 (mod8)

2. if n is odd, cn = σ(n).

In particular, if p is an odd prime, then cp = p + 1.

Proposition 4.8 The number of all normal subgroups of index n in the group Cc is
the following:

1. if n is even,

cn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ(n) − σ
(n

2

)
+

∑

l|( n
2 )

σ (l), (n ≡ 2 ∨ n ≡ 6) (mod8)

σ (n) − σ
(n

2

)
−

∑

l|( n
4 )

σ (l) +
∑

l|( n
2 )

σ (l), n ≡ 4 (mod8)

σ (n) − σ
(n

2

)
−

∑

l|( n
4 )

σ (l) +
∑

l|( n
2 )

σ (l) + 4 ·
∑

l|( n
8 )

σ (l), n ≡ 0 (mod8)

2. if n is odd, cn = σ(n).

In particular, if p is an odd prime, then cp = p + 1.
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5 Proof

The method for calculating the number of subgroups of any given index in a group G
having an abelian normal subgroup T of a finite index (see [6]) could be applied to
any polycyclic group or to any poly-(infinite) cyclic-by-finite group. In the sequel, G
will denote a space group with the point group isomorphic to the cyclic group of order
2. In each particular case, we make two standard steps. We firstly count all subgroups
containing T as its subgroup. Then we count all subgroups contained in T .

In our setting, G is a finite extension of a free abelian group T of rank 3. Group T is
generated by three translations x , y and z. A subgroup of finite index in T is free and
generated by elements xa ybzc, yd ze and z f . These exponents are unique to the limits:
a, d, f > 0, 0 ≤ b < d, 0 ≤ c, e < f . Since P is a group isomorphic to the cyclic
group of order 2, the index of a subgroup of T in group G is 2ad f . We know that the
zeta function of T ∼= Z

3 is ζ(s)ζ(s−1)ζ(s−2). Therefore, the contribution to the zeta
function of a groupG coming from this part of the problem is 2−sζ(s)ζ(s−1)ζ(s−2)
for all eight groups.

Thus, we only need to count subgroups containing T . So, let H1 be a subgroup
containing T as its subgroup. Then H1 is generated by elements r xa ybzc, xd yez f ,
ygzh and zi , where x , y and z are generators of T and rT is a generator of the point
group P , which is cyclic of order 2. Furthermore, these exponents are unique to the
limits: d, g, i > 0, 0 ≤ a < d, 0 ≤ b, e < g, 0 ≤ c, f, h < i . The index of a
subgroup generated by these elements is dgi . Since T is a normal subgroup in G, then
H1 ∩ T is a normal subgroup in T and

H1
/
(H1 ∩ T ) � H1T

/
T .

This means that
(
xd yez f

)r
,
(
ygzh

)r
and

(
zi

)r
are elements of H1 ∩ T . In this case

H1T
/
T � P,

hence
(
r xa ybzc

)2
is an element of H1 ∩ T . The problem of counting subgroups is

reduced to solving the system of equations derived from these conditions. In effect, we
consider the number of possible combinations of values (solutions of the corresponding
system of equations) which the exponents of the generators of H1 may take.

If H1 is a normal group in G, then its elements have also to satisfy relations(
r xa ybzc

)r
,
(
r xa ybzc

)x
,
(
r xa ybzc

)y
,
(
r xa ybzc

)z ∈ H1. Since normality is not a
transitive relation, we must also add conditions which will ensure that a normal sub-
group of T is a normal subgroup of G. Let H2 =< xa ybzc, yd ze, z f > be a normal
group of T . Then H2 is a normal subgroup of G, if

(
xa ybzc

)r
,
(
yd ze

)r
and

(
z f

)r
are

elements of H2.
When writing a space group in an abstract form, we follow the descriptions of these

groups given in [5]. The software packages Mathematica Wolfram and GAP were apt
for double checking the calculations. Mathematica was used to convert our formulas
into lists of integers an or cn .

We demonstrate the above technique in detail in the case of group C2.
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5.1 Zeta function of group C2

Recall thatC2 = 〈
x, y, z, r | [x, y] , [x, z] , [y, z] , r2, xr = xy, yr = y−1, zr = z−1

〉
.

We are counting subgroups of the form H1 = 〈
r xa ybzc, xd yez f , ygzh, zi

〉
. Each

of
(
r xa ybzc

)2
,
(
xd yez f

)r
,
(
ygzh

)r
,
(
zi

)r
must lie in H1 ∩ T . Now,

(
r xa ybzc

)2 =
x2a ya ,

(
xd yez f

)r = x−d y−ez− f · x2d yd , (ygzh)r = y−gz−h ,
(
zi

)r = z−i . Each of
x−d y−ez− f , y−gz−h , z−i is contained in H1 ∩ T = 〈

xd yez f , ygzh, zi
〉
, regardless of

the values of d, e, f , g, h, i . So,
(
r xa ybzc

)2
lies in H1 ∩ T if x2a ya lies in H1 ∩ T ;

(
xd yez f

)r
lies in H1 ∩ T if x2d yd lies in H1 ∩ T . If x2a ya , x2d yd are in H1 ∩ T then

there exist integers α1, α2, β1, β2, γ1, γ2 such that:

x2d yd =
(
xd yez f

)α1
(
ygzh

)β1
(
zi

)γ1
, x2a ya =

(
xd yez f

)α2
(
ygzh

)β2
(
zi

)γ2
.

We get the following system of equations:

S1 =
{
dα1 = 2d, eα1 + gβ1 = d, f α1 + hβ1 + iγ1 = 0,

dα2 = 2a, eα2 + gβ2 = a, f α2 + hβ2 + iγ2 = 0,

}

.

The first equation implies α1 = 2. Consider the equation 2e = −gβ1 + d. The
left side of the equation is even. If g is even, then d has also to be even. We get:
d
g ≥ β1 > −2 + d

g . There are two integers in the interval
[
d
g , d

g − 2
)
. To solve the

above system of equations, we shall consider the following cases:

Case 1. d , g, i are odd. In this case, there is one choice for a. Since β1 has to be odd,
there is one choice for e. From 2 f + hβ1 + iγ1 = 0, we get − hβ1

i ≥ γ1 > −2− hβ1
i .

Now, hβ1 and iγ1 have to be odd or even at the same time. Since β1 and i are odd, we
conclude that if h is odd then γ1 is odd and if h is even then γ1 is even. Hence, there
are i choices for h and one choice for f . The zeta function contribution in this case
is:

∑
d,g,i∈N′ d−sg−s i−sgii , where N′ = {2k − 1| k ∈ N}.

Case 2. and Case 3. (d, i are odd, g is even) and ( d is odd, g, i are even). These cases
are impossible.

Case 4. i , g are odd, d is even. There are two choices for a. Since β1 has to be even,
there is one choice for e. Furthermore, γ1 has to be even, so there is one choice for f .
The zeta function contribution in this case is: 2 · ∑

d∈2N,g,i∈N′ d−sg−s i−sgii , where
N

′ = {2k − 1| k ∈ N}.
Case 5. g, d are odd, i is even. There is one choice for a; β1 has to be odd, so there is
one choice for e. Since hβ1 and iγ1 have to be odd or even at the same time, we see
that h has to be even. There are two choices for γ1, hence there are two choices for f .
The zeta function contribution in this case is:

∑
i∈2N,g,d∈N′ d−sg−s i−sgi · i

2 · 2.
Case 6. g is odd, i , d are even. There are two choices for a; β1 has to be even, so there
is one choice for e. If a = 0, then there are two choices for f ; if a = d

2 then γ1 is
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even, so there is one choice for f in this case. The zeta function contribution reads:
3
∑

g∈N′,d,i∈2N d−sg−s i−sgii .

Case 7. g, d are even, i is odd. There are two choices for a. If a = 0 and β1 is even,
then γ1 is even and there are i choices for h. Hence, for a = 0 and β1 is even, there
are one choice for e and one choice for f . If a = 0 and β1 is odd, then γ1 and h are
both even or both odd. If a = d

2 then β1, γ1 are even and there is one choice for f .
The zeta function contribution in this case is: 3

∑
i∈N′,d,g∈2N d−sg−s i−sgii .

Case 8. g, d i are even. There are two choices for a. If a = 0 and β1 is even, then
there are two choice for γ1 and there are i choices for h. If a = 0 and β1 is odd, then
there are two choices for γ1 and h is even ( i2 choices for h). If a = d

2 then β1, γ1 are
even and there is one choice for f . The zeta function contribution in this case is:

∑

d,i,g∈2N
d−sg−s i−s · g · i · i · 2 +

∑

d,i,g∈2N
d−sg−s i−s · g · i · i

2
· 2

+
∑

d,i,g∈2N
d−sg−s i−s · g · i · i = 4

∑

d,i,g∈2N
d−sg−s i−s · g · i · i.

Finally, we obtain the zeta function for group C2:

ζC2(s) =
∑

d,g,i∈N′
d−sg−s i−sgii + 2 ·

∑

d∈2N,g,i∈N′
d−sg−s i−sgii +

+
∑

d,g∈N′,i∈2N
d−sg−s i

−s
gii + 3

∑

g∈N′,i,d∈2N
d−sg−s i−sgii

+3
∑

i∈N′,d,g∈2N
d−sg−s i−sgii + 4

∑

d,i,g∈2N
d−sg−s i−sgii

+2−sζ(s)ζ(s − 1)ζ(s − 2)

= (1 + 2−2s+3)ζ(s)ζ1(s)ζ2(s).

5.2 Normal zeta function of group C2

We use the set of constraints which we obtained in the previous Subsection. By count-
ing the number of subgroups H1 = 〈

r xa ybzc, xd yez f , ygzh, zi
〉
of C2, we deduced

the system S1.
Based on the conditions of normality, we get another set of constraints:

S2 =

⎧
⎪⎨

⎪⎩

dα3 = 0, eα3 + gβ3 = −1, f α3 + hβ3 + iγ3 = 0

dα4 = 0, eα4 + gβ4 = 2, f α4 + hβ4 + iγ4 = 0,

dα5 = 0, eα5 + gβ5 = 0, f α5 + hβ5 + iγ5 = 2

⎫
⎪⎬

⎪⎭
.

The equations dα3 = 0, eα3 + gβ3 = −1, f α3 + hβ3 + iγ3 = 0 imply that
g = 1, β3 = −1, so b = e = 0 = h, while the equations dα5 = 0, eα5 + gβ5 =
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0, f α5 + hβ5 + iγ5 = 2 imply that i = 1 or i = 2. Observing four cases depending
on whether d is even or odd and depending on values of i , we get

∑

d∈N′
d−s + 2

∑

d∈2N
d−s + 4 · 2−s

∑

d∈N
d−s + 6

∑

d∈2N
d−s2−s

= (2 · 2−2s + 5 · 2−s + 1)ζ(s).

Now, we count normal subgroups of T . Any such subgroup takes the form H2 =〈
xa ybzc, yd ze, z f

〉
. We assume 0 < a, 0 ≤ b < d, 0 ≤ c, e < f . Let us check the

conditions of normality inC2. These require that
(
xa ybzc

)r
,
(
yd ze

)r
,
(
z f

)r
are in H2.

After some calculations, we get the next set of constraints:

S3 = {aα1 = 2a, bα1 + dβ1 = a, cα1 + eβ1 + f γ1 = 0} .

This system of equations reduces to three equations: dβ1 = a − 2b, eβ1 + f γ1 =
0,−2e+ f γ1 = 0. The case a odd and d even is impossible. Thus, we have six cases
depending on whether a or d or f are odd or even. The respective contributions are:

∑

a,d, f ∈N′
a−sd−s f −s f +

∑

a∈2N,d, f ∈N′
a−sd−s f −s f

+ 2
∑

a, f ∈2N,d∈N′
a−sd−s f −s f + 2

∑

a,d∈2N, f ∈N′
a−sd−s f −s f

+
∑

a,d∈N′, f ∈2N
a−sd−s f −s f + 3

∑

a,d, f ∈2N
a−sd−s f −s f

= (1 − 2−s + 4 · 2−2s)ζ(s)ζ(s)ζ(s − 1).

Combining the contributions coming from H1 and H2, we get the normal zeta
function of C2:

ζ �
C2(s) = (2 · 2−2s + 5 · 2−s + 1)ζ(s) + 2−s · (1 − 2−s + 4 · 2−2s)ζ(s)ζ(s)ζ1(s).

6 Remarks

As far as Sect. 5.1 is concerned, using a similar argumentation one can obtain more
general assertions of the following form.

Proposition 6.1 Let n ≥ 2 be a fixed integer and Gn be the group defined by

Gn =
〈
r, x1, x2, . . . , xn| r2,

[
x j , xk

]
(∀1 ≤ j, k ≤ n), xi

r = xi
−1(∀1 ≤ i ≤ n)

〉
.

The zeta function of group Gn is given by

ζGn (s) = ζ(s − 1)ζ(s − 2) · · · ζ(s − n)+ 2−sζ(s)ζ(s − 1)ζ(s − 2) · · · ζ(s − n + 1).
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Proposition 6.2 Let n ≥ 2 be an integer and Gn be the group defined by Gn =〈
r, x1, x2, . . . , xn

∣
∣r2,

[
x j , xk

]
(∀1 ≤ j, k ≤ n), x1r = x1x2, xi r = xi−1(∀1 < i ≤

n)
〉
. The zeta function of group Gn is ζGn (s) = (1 + 2−2s+n)ζ(s)ζ(s − 1)ζ(s −

2) · · · ζ(s − n + 1). The zeta function of group Gn has an Euler product.
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